Limits at infinity Limit of a function



the limit of function @ infinity exists.


for f(x) real function, limit of f x approaches infinity l, denoted








lim

x




f
(
x
)
=
l
,


{\displaystyle \lim _{x\to \infty }f(x)=l,}



means



ε
>
0


{\displaystyle \varepsilon >0}

, there exists c such




|

f
(
x
)

l

|

<
ε


{\displaystyle |f(x)-l|<\varepsilon }

whenever x > c. or, symbolically:








ε
>
0


c


x
>
c
:


|

f
(
x
)

l

|

<
ε


{\displaystyle \forall \varepsilon >0\;\exists c\;\forall x>c:\;|f(x)-l|<\varepsilon }

.

similarly, limit of f x approaches negative infinity l, denoted








lim

x





f
(
x
)
=
l
,


{\displaystyle \lim _{x\to -\infty }f(x)=l,}



means



ε
>
0


{\displaystyle \varepsilon >0}

there exists c such




|

f
(
x
)

l

|

<
ε


{\displaystyle |f(x)-l|<\varepsilon }

whenever x < c. or, symbolically:








ε
>
0


c


x
<
c
:


|

f
(
x
)

l

|

<
ε


{\displaystyle \forall \varepsilon >0\;\exists c\;\forall x<c:\;|f(x)-l|<\varepsilon }

.

for example








lim

x






e

x


=
0.



{\displaystyle \lim _{x\to -\infty }e^{x}=0.\,}








Comments

Popular posts from this blog

Mobility.2C training and insignia Impi

Expenses controversy Ian Gibson (politician)

11th century parish church of St Leonard Hythe, Kent