Limits at infinity Limit of a function
the limit of function @ infinity exists.
for f(x) real function, limit of f x approaches infinity l, denoted
lim
x
→
∞
f
(
x
)
=
l
,
{\displaystyle \lim _{x\to \infty }f(x)=l,}
means
ε
>
0
{\displaystyle \varepsilon >0}
, there exists c such
|
f
(
x
)
−
l
|
<
ε
{\displaystyle |f(x)-l|<\varepsilon }
whenever x > c. or, symbolically:
∀
ε
>
0
∃
c
∀
x
>
c
:
|
f
(
x
)
−
l
|
<
ε
{\displaystyle \forall \varepsilon >0\;\exists c\;\forall x>c:\;|f(x)-l|<\varepsilon }
.
similarly, limit of f x approaches negative infinity l, denoted
lim
x
→
−
∞
f
(
x
)
=
l
,
{\displaystyle \lim _{x\to -\infty }f(x)=l,}
means
ε
>
0
{\displaystyle \varepsilon >0}
there exists c such
|
f
(
x
)
−
l
|
<
ε
{\displaystyle |f(x)-l|<\varepsilon }
whenever x < c. or, symbolically:
∀
ε
>
0
∃
c
∀
x
<
c
:
|
f
(
x
)
−
l
|
<
ε
{\displaystyle \forall \varepsilon >0\;\exists c\;\forall x<c:\;|f(x)-l|<\varepsilon }
.
for example
lim
x
→
−
∞
e
x
=
0.
{\displaystyle \lim _{x\to -\infty }e^{x}=0.\,}
Comments
Post a Comment