Examples Limit of a function
1 examples
1.1 non-existence of one-sided limit(s)
1.2 non-equality of one-sided limits
1.3 limits @ 1 point
1.4 limits @ countably many points
examples
non-existence of one-sided limit(s)
the function without limit, @ essential discontinuity
the function
f
(
x
)
=
{
sin
5
x
−
1
for
x
<
1
0
for
x
=
1
0.1
x
−
1
for
x
>
1
{\displaystyle f(x)={\begin{cases}\sin {\frac {5}{x-1}}&{\text{ }}x<1\\0&{\text{ }}x=1\\{\frac {0.1}{x-1}}&{\text{ }}x>1\end{cases}}}
has no limit @
x
0
=
1
{\displaystyle x_{0}=1}
(the left-hand limit not exist due oscillatory nature of sine function, , right-hand limit not exist due asymptotic behaviour of reciprocal function), has limit @ every other x-coordinate.
the function
f
(
x
)
=
{
1
x
rational
0
x
irrational
{\displaystyle f(x)={\begin{cases}1&x{\text{ rational }}\\0&x{\text{ irrational }}\end{cases}}}
(the dirichlet function) has no limit @ x-coordinate.
non-equality of one-sided limits
the function
f
(
x
)
=
{
1
for
x
<
0
2
for
x
≥
0
{\displaystyle f(x)={\begin{cases}1&{\text{ }}x<0\\2&{\text{ }}x\geq 0\end{cases}}}
has limit @ every non-zero x-coordinate (the limit equals 1 negative x , equals 2 positive x). limit @ x = 0 not exist (the left-hand limit equals 1, whereas right-hand limit equals 2).
limits @ 1 point
the functions
f
(
x
)
=
{
x
x
rational
0
x
irrational
{\displaystyle f(x)={\begin{cases}x&x{\text{ rational }}\\0&x{\text{ irrational }}\end{cases}}}
and
f
(
x
)
=
{
|
x
|
x
rational
0
x
irrational
{\displaystyle f(x)={\begin{cases}|x|&x{\text{ rational }}\\0&x{\text{ irrational }}\end{cases}}}
both have limit @ x = 0 , equals 0.
limits @ countably many points
the function
f
(
x
)
=
{
sin
x
x
irrational
1
x
rational
{\displaystyle f(x)={\begin{cases}\sin x&x{\text{ irrational }}\\1&x{\text{ rational }}\end{cases}}}
has limit @ x-coordinate of form
π
2
+
2
n
π
{\displaystyle {\frac {\pi }{2}}+2n\pi }
, n integer.
Comments
Post a Comment