L.27H.C3.B4pital.27s rule Limit of a function
this rule uses derivatives find limits of indeterminate forms 0/0 or ±∞/∞, , applies such cases. other indeterminate forms may manipulated form. given 2 functions f(x) , g(x), defined on open interval containing desired limit point c, if:
then:
lim
x
→
c
f
(
x
)
g
(
x
)
=
lim
x
→
c
f
′
(
x
)
g
′
(
x
)
{\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f (x)}{g (x)}}}
normally, first condition important one.
for example:
lim
x
→
0
sin
(
2
x
)
sin
(
3
x
)
=
lim
x
→
0
2
cos
(
2
x
)
3
cos
(
3
x
)
=
2
⋅
1
3
⋅
1
=
2
3
.
{\displaystyle \lim _{x\to 0}{\frac {\sin(2x)}{\sin(3x)}}=\lim _{x\to 0}{\frac {2\cos(2x)}{3\cos(3x)}}={\frac {2\cdot 1}{3\cdot 1}}={\frac {2}{3}}.}
Comments
Post a Comment